
SketchFlat, A Constraint-Based

Drawing Tool

Jonathan Westhues

jwesthues at cq.cx

June 26, 2007

1 Introduction

SketchFlat is a two-dimensional technical drawing program. It is designed pri-
marily to generate CAM output data, for manufacturing on a laser cutter, wa-
terjet machine, vinyl cutter, 3-axis mill, or other machine tool.

In a typical drawing program, the geometry of lines and curves might be
specified by dragging points with a mouse. If it is necessary to specify a point’s
position exactly, then it might be possible to specify that point’s coordinates
(x, y), as numbers typed in to a text box.

SketchFlat is different; here a drawing is specified in terms of distances, an-
gles, and geometric constraints. A line segment might be specified as 30 mm
long, rotated 15◦ with respect to the y-axis, and translated such that its two
endpoints lie on the x- and y-axes. This is often called ‘parametric dimen-
sioning,’ and its advantages are obvious. The sketch looks like a dimensioned
mechanical drawing; the user can enter the specifications of the part in what-
ever format corresponds most naturally to the specifications that he is given. If
the specifications of the part change, then the CAD tool, and not the user, will
recalculate the geometry.

Such a tool is an old idea. Ivan Sutherland’s famous Sketchpad introduced
the concept, in 1963. By now, many commercial programs are available. Most
3-d CAD packages provide some form of parametric dimensioning. Pro/E uses
a full numerical-solution sketcher. Autodesk Inventor provides dimensioning,
but as best I can tell, they use a spreadsheet-type (acyclic dependency graph)
solver, which isn’t nearly as powerful.

Different constraint solver drawing tools might be compared based on several
criteria, including:

Choice of geometric primitives. Consider an arc of a circle. We might
describe it in terms of its center (xc, yc), its radius r, and its beginning
and ending angles θi and θf . This representation translates nicely into

1

parametric equations, which might be useful. On the other hand, we are
unlikely to be interested in θi and θf directly. The user is more likely to
wish to constrain, for example, the positions of the endpoints of the arc.
This means that our constraint equations will be more complex. They will
have to represent not just the desired concept (i.e, the desired position of
the arc’s endpoints), but additionally the mapping from our choice of
primitive to the positions of the endpoints of the arc. They will also be
specific to just arcs; we can’t reuse our general ‘point’ constraints.

So we might choose a different set of parameters. We could choose the
endpoints of the arc, P0 at (x0, y0) and P1 at (x1, y1), and the radius r.
This representation is also flawed. If the chord length lc from P0 to P1 is
greater than the diameter 2r, then the variables do not describe a circle. If
lc is less than 2r, then the variables describe two different possible circles;
if the arc’s endpoints lie on a vertical line, then one circle’s center lies to
their right, and the other to their left. We could pick between the circles
according to the sign of r, for example, but that gets complicated, and
we’ve done nothing to fix the problem when d > 2r.

Our chosen primitive should have geometric meaning for any possible value
of the variables. This is a generally good idea, but it’s particularly im-
portant when we are solving for these variables. If certain values of the
variables are meaningless, then our constraint equations are very likely to
have numerical problems as we approach the impossible configurations.

We might improve our {(x0, y0), (x1, y1), r} representation by replacing the
radius r with some better-behaved derived value. Consider, for example,
the parameter

a =

√
[(x0 + x1)/2 − xc]2 − [(y0 + y1)/2 − yc]2

(x0 − x1)2 + (y0 − y1)2

This is the ratio of two lengths: that of the chord, and that of the shortest
line from the chord to the center of the circle. For a semi-circle, it is equal
to zero. As the angle of the arc goes to zero (or 360) degrees, a goes to
negative or positive infinity. The left-or-right ambiguity is naturally re-
solved by the sign of a. In combination with the endpoints, this parameter
a has geometric meaning for any value of a. (This choice of parameter is a
semi-popular trick in computational geometry, as far as I know proposed
by Sabin in his Ph.D thesis.)

But, the parameter a by itself is not very meaningful. It’s unlikely that
anyone would be interested in a constraint directly on a. This means that
our constraint equations will be complicated.

It might seem attractive to represent the arc in terms of three points:
its two endpoints, and its center. This will allow us to reuse all of our
general ‘point’ constraints, and it is always unambiguous. (We still have
to describe the direction of the arc, but we might, for example, say that it

2

runs counter-clockwise from P0 to P1.) The problem is that we gain an
extra free variable, which once again means that the user can construct
impossible arcs, if the radius from P0 to the center is not equal to the
radius from P1 to the center. This free parameter will also cause trouble
for the solver; we will need six constraint equations to describe the arc,
when we should need only five.
The simplicity of the constraints will be determined by the representation
of the primitives they are constraining. A careful choice of primitives will
simplify the form of our constraint equations, and permit us to apply a
single class of constraint to many different primtives.

Handling of underconstrained sketches. We might not always have
enough constraints to fully describe the geometry of our sketch. In that
case we do not have a unique solution; we have an infinite number of
solutions, in some number of parameters. We can still solve, but we will
have to choose which of the valid solutions we will report. The choice
of what is ‘reasonable’ is subjective; different assumptions will lead to
different valid solutions.

Solution algorithms. Each constraint corresponds to an equation, that
describes some property that our sketch ought to satisfy. To determine
the geometry of the sketch, we must solve these equations. We might
attempt to solve these equations in the same way that a spreadsheet does.
In concept, we build a dependency graph, that tells us which unknowns
we require in order to solve for some other unknown. If this graph is
connected and acyclic, then we can solve for the unknowns one by one.
This is what a spreadsheet does.
Like a spreadsheet, this scheme breaks if the user creates a circular de-
pendency. This is unfortunate, because it greatly restricts the set of con-
straints we can use. A circular dependency corresponds to two or more
equations that must be solved simultaneously. This is not impossible, but
is much more complex. Simple cases might be soluble in closed form,
through a combination of symbolic algebra and pre-solved special cases.
Numerical solution is also a possibility; here, we have the significant ad-
vantage of a good-quality initial guess. The user must draw the sketch
before he constrains it, and he is likely to draw it in some reasonable
approximation of the desired final solution.
So we are solving a system of nonlinear equations. Our solver should be
fast enough that we can run it as the user drags a point with the mouse;
this gives us something on the order of thirty milliseconds. Any general-
purpose numerical method (Newton’s method, for example) can probably
be made to work. If possible, then we would like to take advantage of any
structure that the system might have, in order to speed up and stabilize
the numerical solver.
The system of equations, once appropriate assumptions have been made,
will not have an infinite number of solutions, but it might have more than

3

one. Consider, for example, a five-sided polygon, all of whose edges have
the same length, and all of whose vertices lie on a circle. A user might
draw this if he wanted a regular pentagon; but if the solver produces a
five-pointed star, or an equilateral triangle in which one of the edges is
traced three times, then it has still satisfied the constraints. In general,
we would like to avoid surprising behavior in the face of these multiple
solutions.

2 Data Structures

A sketch consists of entities and constraints.
Internally, an entity is reprsented by a 32-bit unique ID, with type hEntity.

An entity has associated with it some number of points, some number of extra
parameters, and some number of (infinitely long) datum lines. For example,
a datum point has one point, zero extra parameters, and zero lines. A line
segment has two points, zero extra parameters, and zero lines. A circle has one
point, one extra parameter (for the radius), and zero lines.

Points are represented by 32-bit unique IDs as well, with type hPoint. The
ID for the kth point associated with a given entity may be derived from its
hEntity and k. Parameters are represented by 32-bit unique IDs, with type
hParam. The ID for the x or y coordinate of a point may be derived from that
point’s hEntity, and the ID for the kth extra parameter associated with some
entity may be derived from its hEntity and k.

The current values of each parameter are stored in a table. To describe a
line segment, for example, we would start with its hEntity. From that, we can
compute the hPoints of its two endpoints. For each endpoint, we can compute
the hParam corresponding to its x and y coordinates, and finally look up the
values of those parameters. Only the last step (looking up the parameter values)
required a table lookup; the rest is just deriving one unique ID from another
according to some arithmetic rule.

This provides a pseudo-object-oriented structure: a constraint that accepts
an hPoint can accept any point, whether that point is an endpoint of a line
segment or the center of a circle. But, since these are just unique IDs, the only
real data structure is the table of parameters. This is good. We have simplified
the solver by putting everything that it’s allowed to change in one table.

A constraint is an equation in terms of some number of parameters. For ex-
ample, a ‘horizontal’ constraint might force py0−py1 = 0 for some line segment’s
parameters py0 and py1.

To solve, we write an equation for each constraint. These equations are
written symbolically, in terms of each parameter’s hParam. This symbolic form
will simplify the solver’s work greatly, and permit the application of general
solution methods to many different types of constraint. Otherwise we might
need a point-on-line solver, and a length solver, and a line-tangent-to-cubic
solver, and so on; now we just need an equation solver.

4

3 Geometric Primtiives

The primitives are represented as follows:

Datum point. By that point.

Datum line. By two parameters: an angle pθ in [0, π), and a parameter
pA. The direction of the line is given by

(dx, dy) = (cos pθ, sin pθ)

and the line travels through the point

(x0, y0) = (−pA sin pθ, pA cos pθ)

The solver doesn’t know about phase unwrapping, so it might sometimes
choose pθ outside the desired interval.

Line segment. By its endpoints.

Circle. By its center point and radius.

Arc of a circle. By two points A and B that lie on the arc, and by the
center C of the circle. This is three points total, or six real unknowns,
which is one too many. I therefore generate one hidden constraint, that

distance(A,C) = distance(B,C)

The arc is counterclockwise from A to B; to convert a 10 degree arc into
a 350 degree arc, swap the positions of the two on-curve points.

I don’t like the idea that entities generate extra constraints, but the center
of the circle is useful enough that you almost always want to have it
around, and so are the endpoints. I am aware of the usual representations
of an arc in computational geometry, and tried several of them, but all of
those seemed worse.

The slope of the arc at its endpoint is perpendicular to the radius at the
end point. This means that a tangency constraint may be written as an
angle (perpendicular) constraint on the line segment connecting the arc’s
endpoint and center.

The ‘arc’ is actually drawn as a section of a linear spiral. This forces it
to interpolate A and B. This guarantees that no matter what the solver
does, a closed curve that includes our circular arc will remain a closed
curve.

Cubic spline. In Bezier form. The spline is C1-continuous. A spline
consisting of n piecewise cubic segments is described by

2 + 2n

5

points: the two (on-curve) endpoints, and two (typically off-curve) control
points for each segment. The missing on-curve control points lie at the
midpoint of the line segment connecting the two adjacent off-curve control
points.

The slope of the curve at either endpoint is equal to the slope of a line
from that endpoint to the next control point. This simplifies tangency
constraints. Except at the endpoints of the spline, on-curve control points
are not needed; we can calculate them, because they lie at the midpoint
of the line connecting the two off-curve control points on either side.

Most drawing programs provide G1-continuous cubic splines, but those do
not have a nice representation in terms of an integer number of points.

Most 3-d CAD programs have tools for second derivative continuity. This
is important when the plane curves will later be used in the definition of
3-d surfaces. I think it is less important when the plane curves are used
to make flat objects.

Text in a TrueType font. By two points. The character height is equal
to the distance between the two points, and the baseline is perpendicular
to the line connecting the points. Lines and quadratics from the glyphs
appear in the sketch’s table of curves, the same as do the curves from any
other primitive.

4 Constraint Equations

Each constraint corresponds to one or more equations. Then equations are writ-
ten in terms of the parameters that describe the geometric primitives. When
a constraint equation holds, the geometric primitive satisfies the specified con-
straint. The equations are written as follows:

Distance, Length. If the requested length is nonzero, then the dif-
ference between the desired and actual length is equal to zero. If the
requested length is zero, then this degenerates to a point-coincident con-
straint. A point-coincident constraint restricts two degrees of freedom,
while a nonzero distance constraint restricts only one, and is therefore a
special case.

Distance from point to line. Start with the parametric equations of
the line, in the form

(x(t), y(t)) = (x0, y0) + (dx, dy)t

The point is at (xp, yp). The constraint equation is

dx(y0 − yp) − dy(x0 − xp)√
dx2 + dy2

− d = 0

6

where d is the desired distance. This distance d is signed; for a vertical
line, it corresponds to whether (xp, yp) lies to the right or to the left of
the line. The sign of d is not displayed on the sketch, but if a negative
dimension is entered, then the sign of d is flipped.

If d goes to zero, then this becomes a point-on-line constraint.

Angle, perpendicular, parallel, tangent. All of these are the same
constraint. This takes the form of dot product; so if AB is perpendicular
to CD, then

(B − A) · (D − C)
|B − A||C − D|

= 0

For angles other than ninety degrees, one of the vectors is first rotated by
the required fixed angle. It’s necessary to normalize by the length of each
vector; otherwise the solver can satisfy this constraint by making one of
the lines zero-length, and will do so if no other constraint prevents that.

The dot product does not distinguish between rotations of +90 versus
−90 degrees. This means that all angles are taken modulo 180 degrees.
A 30◦ angle is the same as a −150◦ angle. When two lines intersect, four
angles are formed, two equal to θ, two equal to 180◦ − θ. The form of our
constraint is such that we don’t care which one we’re constraining, but
we would like to draw an arc on the sketch, to indicate to the user which
angle is intended. We resolve this ambiguity by entering the angles modulo
360 degrees; the extra bit of information is used to choose between θ and
180◦ − θ. The choice between the two equal angles is made according to
the position of the dimension label, that the user can drag on the sketch
with a mouse.

Coincident points. We are given two points, (p0x, p0y) and (p1x, p1y).
If they are coincident, then

p1y − p0y = 0 p1x − p0x = 0

Each equation just marks two parameters as equal. We can therefore solve
these equations by forward-substitution, and not numerically. This makes
them very stable and fast.

Horizontal, vertical. We are given a line segment, with endpoints
(p0x, p0y) and (p1x, p1y). For a horizontal line,

p1y − p0y = 0

and for a vertical line,
p1x − p0x = 0

This just marks two parameters as equal. We can therefore solve these
equations by forward-substitution, and not numerically. This makes them
very stable and fast.

7

Symmetric. Two points are symmetric about a datum line if (a) the line
segment connecting the two points is perpendicular to the datum line, and
(b) the two points lie at equal perpendicular distances from the datum line.
A ‘symmetric’ constraint is therefore a combination of an angle constraint
and a point-line-distance constraint.

5 Assumptions and Consistency Checking

Before we try to solve the system, we must determine whether it is consistent
or inconsistent, and whether it is under- or exactly-constrained. For a linear
system, these terms are well-defined. For the nonlinear system that we are
solving, I will define them as follows:

Under-constrained. The system has an infinite number of solutions
that satisfy the constraints, in one or more parameters.

Exactly constrained. The system has a finite number of solutions that
satisfy the constraints. It’s possible that the system has more than one
valid solution; if that is the case, then our initial numerical guess will
determine which solution we find.

Consistent. The system has at least one solution.

Inconsistent. The system has no solution. A system that is redundantly
constrained (e.g., a point constrained to lie 3 mm from the x-axis, 4 mm
from the y-axis, and 5 mm from the origin) is treated as inconsistent.

If the system is inconsistent, then we cannot go any further. We should
report this to the user, and perhaps give the user advice on what he might do
to make the system consistent again. We are sure that we cannot solve.

If the system is exactly constrained, then we are ready to solve immedi-
ately. The constraints fully describe the geometry, so there is no need to make
assumptions.

If the system is under-constrained, then we can solve, but we must make
some assumptions. If we have m equations, and n unknowns, then we will have
to make n − m assumptions. We must be careful to make these assumptions
in such a way that the system stays consistent. For example, given the under-
constrained system

p3 = 3
p1 + p2 + p3 = 17

we will create an exactly constrained system by assuming a value for p1 or p2,
but an inconsistent system by assuming a value for p3.

The assumptions could take any form. Ideally, we would like to make as-
sumptions that are orthogonal to the degrees of freedom that are already con-
strained for each point. If a point’s distance to the origin is constrained, for

8

example, then we would like to assume its angle with respect to the origin. That
would be rather complex; instead we will choose to assume either a point’s x co-
ordinate or its y coordinate, so that the user can drag the points along (locally)
vertical or horizontal lines.

Consistency checking is a self-contained process, that is undertaken before
we try to solve the system. My algorithms for consistency checking are based
around a linearized version of our constraints. The first step is to obtain the
system Jacobian. This is easy, because the constraint equations are written
symbolically; I can differentiate symbolically, and not worry about numerical
problems with numerical derivatives.

The Jacobian is then placed in reduced row echelon form, using Gauss-
Jordan elmination, to obtain Jr. If a row of zeros appears in the Jr, then Jr

does not have full rank, and the linearized constraints do not form a basis. Our
constraints must therefore be inconsistent or redundant.1

If we did find a row of zeros, then we report to the user that the system is
inconsistent. As a courtesy, we can also determine which constraints the user
might wish to remove, in order to make the system consistent again. I do this
by brute force: I re-solve the Jacobian with each constraint’s equations missing.
If I still get a row of zeros, then it would not help to remove that constraint. If
the row of zeros goes away, then the user can fix the sketch by removing that
constraint, and I report that constraint in a list.

If Jr has full rank, then we must have m rows with a leading 1. The columns
in which a leading 1 appears correspond to the variables that will be solved
for; all the others will be assumed at their current values. These assumptions
correspond to striking out those n − m columns, leaving an m by m identity
matrix.

This guarantees that the linearized system is consistent. It does not guar-
antee that the actual nonlinear system is consistent, if our constraints are very
nonlinear and our initial guess is far from the desired solution. It also doesn’t
guarantee that we’ve made good assumptions. For highly nonlinear constraints,
these assumptions of the form pj = pj0 might always lead to an inconsistent
system; consider the constraint

p2
1 + p2

2 − 100 = 0

with p1 = 14 and p2 = 20 initially.
We would like to make the assumptions that are most likely to lead to a

consistent subsystem. A given set of equations might (and will usually) permit
us to make any of a large number of possible sets of assumptions. I’ve investi-
gated several different schemes to choose. My favorite of these is based around
the sensitivity of the other parameters to the parameter that we are thinking of

1It’s obvious that a row of zeros means something bad. The assumptions that we make
will correspond to crossing out columns, until the matrix is square. This does not get rid of
the row of zeros. Our Newton’s method is therefore certain to get a singular Jacobian and
fail.

9

assuming. Let us say that we have our Jacobian, of the form
∂f0
∂p0

∂f0
∂p1

· · · ∂f0
∂pa

· · · ∂f0
∂pn

...
...

...
...

∂fm

∂p0

∂fm

∂p1
· · · ∂fm

∂pa
· · · ∂fm

∂pn

for some parameter pa. Initially, assume that the constraints are satisfied. Our
parameter pa then changes slightly, to pa0 + ∆pa. In general, the constraints
are no longer satisfied. It might be possible to change the other parameters
{pj , j 6= a} in such a way as to satisfy the constraints again; we achieve this if

∆fi = ∆p0
∂fi

∂p0
+ ∆p1

∂fi

∂p1
+ · · · + ∆pn

∂fi

∂pn
= 0

for each fi. We can write a system of linear equations
∂f0
∂p0

∂f0
∂p1

· · · ∂f0
∂pa−1

∂f0
∂pa+1

· · · ∂f0
∂pn

...
...

...
...

...
∂fm

∂p0

∂fm

∂p1
· · · ∂fm

∂pa−1

∂fm

∂pa+1
· · · ∂fm

∂pn

 ∆p
∆pa

= −

∂f0
∂pa

...
∂fm

∂pa

If a solution exists, then we can change the other parameters in such a way as
to satisfy the constraints. This linear system will typically be underdetermined.
(If we are making assumptions, then we have more parameters than unknowns.)
We can solve this system in a least squares sense, minimizing the norm of
(∆p/∆pa). Let sa be the norm of our solution. If sa is large, then a small
change in pa will yield a large change in the other variables. That’s bad. If sa is
small, then a large change in pa will not affect the rest of the sketch very much.
This means that pa is a good candidate for assumption. The situation is more
complex, of course, because our sj values change as the assumptions are made.

This approach seems elegant, but I have not been able to find a fast im-
plementation. It would likely be practical if I cached the assumptions between
solver runs, and re-assumed only when the system’s ‘operating point’ (Jacobian)
had changed dramatically. That’s a lot of work, though.

At the moment, my assumption heuristics are very simple. The Gauss-
Jordan solver does only partial pivoting (rows, but not columns); this means
that the order in which the unknowns are assigned to columns determines the
order of preference with which they will be assumed. I assign the points in
the order that they are drawn. If the norm of the column corresponding to a
point’s x coordinate is greater than the norm of the column corresponding to
a point’s y coordinate, then I swap the order. Consider a point constrained to
lie some fixed distance d from the origin; we should allow the user to drag its y
coordinate when it is close to the x-axis, and its x coordinate when it is close
to the y-axis. This simple rule will do that.

If a point lies on the line y = ±x, then this simple rule will cause trouble; it
switches between the two possibilities erratically, because the point lies exactly
on the boundary between them. I therefore add hysteresis. The ratio of the

10

norms must exceed some threshold before I will change from assuming the x
coordinate to assuming the y. With that modification, my column-norm rule
seems to generate acceptable assumptions for most sketches.

This rule is also susceptible to variations in the way that constraint equations
are expressed. Depending on whether a distance constraint is written as√

(xa − xb)2 + (ya − yb)2 − d = 0

or
(xa − xb)2 + (ya − yb)2 − d2 = 0

the sensitivities will change by orders of magnitude. This problem could be
avoided by requiring, for example, that all constraint equations be of the form
a = 0, where a has dimensions of length. This is natural for a distance con-
straint, but less natural for a dot product angle constraint, where we would end
up with something like

u · v√
|u||v|

It’s also possible to normalize by constant factors, so that the dot product would
become

k
u · v
|u||v|

where k is on the order of a typical length in the sketch. This constant might
be hard-coded, or it might be derived from the bounding box of the sketch that
the user has drawn.

In practice, I haven’t implemented anything particularly clever. To mitigate
this, I take special care in several places, especially when row-reducing the
Jacobian to check consistency and make assumptions. There, I refuse to pivot
on an entry in the matrix if its absolute value is less than some fraction of the
magnitude of its row. That rule is insensitive to the ‘scale’ of any particular
constraint: if an equation

fi(p0, · · · , pn) = 0

is replaced with the equation

kfifi(p0, · · · , pn) = 0

then nothing changes. But, it is sensitive to the scale of a particular unknown. If
we replace an unknown pj with qj = kpjpj , then our equations (justifiably) seem
more or less sensitive to qj than they did to pj , according to the value of kpj .
This is a problem for angle parameters, which are not necessarily on the same
order of magnitude as distances. To fix that, I scale all sensitivities to angles by
a constant factor before considering them in the magnitude-vs-magnitude-of-row
rule.2

2This problem would go away if I chose units such that my angles and distances were of
the same order of magnitude. I currently use microns and radians, but if I used e.g. meters
and radians, then the problem would go away. My fudge factor approach is possibly better, if
I wish to choose the fudge factor at run time, based for example on the size of the bounding
box of the sketch. Otherwise it’s equivalent.

11

6 Solver

Once we have made our assumptions, we have a system of n equations in n
unknowns. The n unknowns are the parameters. Of the equations, m are the
constraint equations, and m − n are assumptions of the form

pj = pj0

where the right hand side is a constant that the user enters with the mouse.
We would now like to solve. We will do so primarily by Newton’s method,

but with several optimizations to exploit the structure of our problem. First,
the assumption equations are obviously not worth solving numerically; they just
correspond to striking out one parameter from the unknowns, and treating it as
a constant. This means that we actually have just m unknowns.

In that system of m unknowns, some of the equations are trivial. If an
equation of the form

pj − pk = 0

exists, then it’s silly for us to solve that numerically; we can just forward-
substitute. We replace pj with pk wherever it appears elsewhere in the system,
and strike out the trivial equation. Trivial equations of this form arise very
frequently due to point-coincident constraints. They might also arise indirectly,
if an assumption permits us to simplify some initially more complex equation.
Since the equations are written in symbolic form, it’s easy to make the sub-
stitution. Partial derivatives (for the Jacobian used in the Newton’s method)
will be taken symbolically later; as long as we are careful to take those after all
applicable substitutions have been made, they will be correct with no additional
effort.

We now have our system of no more than m equations. In concept, we could
now solve numerically. The system might still have structure, though. Consider
the system

f0(p0, p1) = 0
f1(p0, p1) = 0

f2(p0, p1, p2, p3) = 0
f3(p0, p1, p2, p3) = 0

This is a system of four equations in four unknowns. We could solve it as
such, but that is wasteful. Instead, we would be better off solving f0 and f1

simultaneously to obtain p0 and p1, and then solving f2 and f3 simultaneously
to obtain p2 and p3, while treating p0 and p1 as constants. A practical sketch
will often have this nearly-triangular structure, if it is kept more or less exactly
constrained as the user draws it.

If we can exploit this nearly-triangular structure, then we will be able to
solve much more quickly than we otherwise could. The linear system solutions
required in the Newton solver are O(n3), where n is the number of simultane-
ous unknowns. If we can split an n-unknown problem into two n/2-unknown

12

problems, then we’ve improved our asymptotic performance by a factor of 4. In
practice, the gains are often much greater.3

Our Newton solver will search for an independently-soluble subsystem of
equations. If it finds one, then it will solve that system independently. I don’t
have a good method to find independently-soluble subsystems; at the moment, I
just search by brute force. The symbolic equations make it easy to count which
parameters are referenced. The run time of this search is O(

(
m
k

)
), where k is

the number of unknowns in a subsystem. It therefore blows up very quickly. If
k is large and we still haven’t found a subsystem, then it’s better to give up the
search, and solve the remaining problem all at once. I am now using kmax = 5.

Depending on our choice of kmax, it might take us much longer to find the
optimal partition than to solve the partitioned system. In general, though, the
optimal partition will not change very much as a function of the parameters.
This means that we can save our partition in between solution runs, and try
to reuse it. Before searching by brute force, I test all of the subsystems that
worked last time. If I can find one that is still independently soluble, then I will
use it. If not, then I search.

In practice, the sketch is typically built up incrementally—the user draws
some entities, then some constraints, then more entities, then more constraints,
and so on. This gives us an opportunity to build up our remembered partitions
incrementally, so that our brute force search need work over only a small fraction
of the total space.

After solving a subsystem, we can treat the parameters that were solved for
as constants. This might make it easier to partition off the next subsystem. For
example, consider the equation

p1p2 + p3 − 7 = 0

when p1 is known (i.e., was solved for in a previous subsystem), but p2 and
p3 are not. In general, this equation is not independently soluble, but if p1 is
known to be zero, then we can solve this, obtaining p3 = 7. Such equations occur
frequently when lines are parallel to the coordinate axes, so this is a practically
useful special case. The symbolic representation of the equations makes it easy
to simplify them symbolically.

When the user types in a new dimension (for example, they change the length
of a line from 10 mm to 20 mm), we need to re-solve the sketch to reflect that.
If the user has made a large change to the dimension, then our initial guess is no
longer very close to the solution. This increases the risk of nonconvergence, or of
convergence to an undesired solution. I therefore ‘source-step’4 the dimensions
from their initial to their final position, re-solving at each intermediate value of
the dimension.

3Of course, a system that can be partitioned in this way will probably have a sparse
Jacobian. (It doesn’t have to, but in our case it does.) A sparse linear system solve is not
O(n3). But this partitioning approach does not seem any more complex than a sparse matrix
solver, and it also permits me to simplify the yet-unsolved equations after each subsystem is
solved, as described later.

4By analogy with SPICE, where a DC voltage or current source is ramped up very slowly
from zero.

13

